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The probability distributions for the overlaps between and the self-correlations 
of the pure states of the Stanley n-vector model with infinite-range interactions 
are derived. These probability distributions represent two new order parameters 
for the model and are intimately related to the parameters which arise naturally 
within the replica formalism for the treatment of the corresponding quenched 
random-bond model. In contrast to the n = 1 Ising case, the probability 
distributions are nontrivial when n> 1 and an additional parameter for 
self-correlation has to be introduced. 
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1. I N T R O D U C T I O N  

In 1968, H. E. Stanley ~ in t roduced  the n-vector  model  as a unifying 
descr ip t ion  of  m a n y  s impler  n o n r a n d o m  models  in s tat is t ical  mechanics  
such as the Ising mode l  ( n =  1), the V a k s - L a r k i n  plane ro t a to r  mode l  
( n = 2 ) ,  the classical  Heisenberg  mode l  ( n = 3 ) ,  and  the B e r l i n - K a c  
spherical  mode l  (n = oo). Stanley 's  exact  so lu t ions  are confined to nearest  
ne ighbor  one-d imens iona l  chains  and  hence do  no t  exhibi t  a phase  
t ransi t ion.  

On  the o ther  hand,  the mean  field theory  ob ta ined  by consider ing 
this mode l  with an inf ini te-range po ten t ia l  in t roduces  a phase  t ransi t ion.  
The inf ini te-range mode l  is descr ibed by the H a m i l t o n i a n  

2.1 N 

- ~ : ~  Z sfsj +BTZ si (1.1) 
l ~ i < j < ~ N  i ~ l  
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where the SiT- ~ _ 1 ( S i ) = ( S  i .... , $7) are classical n-vectors normalized to 
]lSill =,~fn, ~, /~ denote running indices for the vector components, i, j 
denote lattice sites, V T is the transposed vector V, and B is an external 
magnetic field. The main thermodynamic features of this model have 
been derived by Silver et al. (2) by means of a random walk probability 
distribution. 

If one generalizes the n-vector model (1.1) by introducing quenched 
random bonds, then it turns out that the only adequate description of the 
model is provided by two order parameters. The first one is the probability 
distribution P ~  for the overlap q~ between two of its pure states, while the 
second one is the probability distribution W~p for the self-correlation d~p of 
a pure state of the system. (3) The quantities q~,  d~  and P ~ ,  W~ are 
defined' in Eqs. (3.1)-(3.2). 

It is therefore interesting to see what P ~  and W~ look like for the 
exactly solvable nonrandom model. Furthermore, P ~  and W~ also 
provide an unusual description of the n-vector model (1.1) itself. Instead of 
describing the thermodynamic phases (pure states) of the model by means 
of an external magnetic field B, its space of pure states is characterized by 
the probability distributions P ~  and W~B. 

As a final spinoff, this formulation requires the introduction of a new 
and interesting order parameter, the correlation function for the vector 
components at one site, (S~S~). We shall call this n • n matrix (S~S~) the 
se~-correlation of S. It turns out that (S~S~) can be expressed as a simple 
function of J without having to solve any transcendental equations as for 
the magnetization. Yet ( S ~ S ~  reveals all the characteric thermodynamic 
behavior of the system at a glimpse, as can be seen from Eq. (4.14). 

The paper is organized as follows. In Section 2, which is pedagogical, 
we briefly review the concept of a pure state with which most readers are 
probably familiar but which might help some readers in the perusal of the 
subsequent sections. 

In Section 3 we then define the overlap q~ between two pure states 
and the self-correlation d~p for a pure state of our model (t.1). The overlap 
q~  is determined by the average magnetization per site (S~)  and is simply 
a generalization of the definition for overlap used within the Parisi theory 
of spin glasses. The self-correlation d~p of a pure state, on the other hand, 
is a new order parameter which appears only for n > 1. It depends on the 
self-correlation of S, (S~S~).  We also present alternative definitions q and 
d for the overlap and self-correlation of the pure states of the nonrandom 
n-vector model which are intuitive but which average out some of the 
information contained in q~p and d,p. Finally, we define the probability 
distributions P~p, W~,  P, and W. 

In Section 4 we briefly state the Silver et al. ~z~ result for the magnetiza- 
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tion per site <S~> and then proceed to derive the self-correlation <STS~> 
for our model. 

The remaining Sections 5-7 are devoted to the evaluation of the prob- 
ability distributions P~#, W~#, and P. In all cases, we have managed to 
express them analytically and for general n in terms of hypergeometric 
functions 2F1, or, alternatively, associated Legendre functions of the second 
kind, Q~. 

2. PURE STATES 

In ordinary equilibrium statistical mechanics, statistical expectation 
values for an observable (9 are calculated as 

<(9(S)> _=_ Y~{s} (9(S) e x p [ - / / ~ ( S ) ]  
~2{s} e x p [ -  f l ~ ( S ) ]  

(2.1) 

where ~ is the Hamiltonian of the system and {S} some set of statistical 
variables. 

If we take the example of an Ising spin system without magnetic field, 
and take (9 to be the magnetization per site, then we realize that the 
prescription (2.1) conceals a lot of the physics for low temperatures. It 
predicts zero magnetization, whereas we know that at low temperatures the 
system experiences a spontaneous symmetry breaking which leads to spon- 
taneous magnetization. Equation (2.1) does not describe a pure state 
(thermodynamic phase) of the system, but a mixture of different states, 
the Gibbs state. We can decompose the Gibbs state as the sum of K pure 
equilibrium states which occur with probability Pr, 

K K 

((9(S)> = Z er((9(S)>r, Z Pr  = 1 (2.2) 
r = l  r= l  

where <->r denotes the expectation value for the pure state r. In the case 
of the Ising system without magnetic field we have two pure states, one 
with positive magnetization, the other with negative magnetization, 
and P I = P 2  = 1/2. We interpret Eq. (2.2) as the system in equilibrium 
occupying one of the pure states (depending on its history), and the time 
needed to go from one equilibrium state to another growing exponentially 
with the size of the system. 

The difference between the Gibbs state and pure states can be 
characterized by means of the connected correlation function 

< siaj> - < Si>< Sj> (2.3) 
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For pure states, the connected correlation function must vanish at large 
distances, whereas for the Gibbs state it does not. This means that as 
N-+  oo intensive quantities like ( l / N ) ~ u =  1 Si do not fluctuate in a pure 
state, but they do fluctuate within a mixture of pure states (clustering). 
If we consider the example of the Curie-Weiss model, we obtain two pure 
states characterized by 

(Si)  = +m, (S~Sj) = m  2, lim ( (S~Sj ) -  ( S , ) ( S j ) ) = O  (2.4) 
(i-j) ~ co 

while for the Gibbs state we have 

( S , )  = 0 ,  (S, Sj) = m  2, lim ((SiSj> -- <Si>(Sj))=m2-TkO (2.5) 
( i - - j )  ~ o~ 

In the case of nonrandom Ising spin models, we can extract the two 
pure states by simply introducing a uniform, external magnetic field B 
which may then go to zero as N--+ oo. Depending on the sign of B, this 
prepares the system either in the pure state with ( S i ) - - r n  or in the pure 
state with ( S i ) =  - m .  

In the case of random spin systems, which this approach is unfor- 
tunately not possible since the pure states are not related by any apparent  
symmetry. A magnetic field which prepares a pure state would have to be 
site dependent and follow the local spontaneous magnetizations. We have 
to know these local spontaneous magnetizations before we can define such 
a field. However, the pure states can still be defined without using any 
auxiliary fields by means of the connected correlation function (2.3). More 
details on the concept of pure states can be found, e.g., in refs. 4. 

3. D E F I N I T I O N  OF T H E  O V E R L A P  A N D  S E L F - C O R R E L A T I O N  
P A R A M  ETERS 

We now return to the n-vector model (1.1). Below Tc, and in zero 
magnetic field, the system will occupy one out of a continuum of pure 
states if n > 1. Each of these pure states can be characterized by a unit vec- 
tor B and the limiting procedure B --+ 0. The continuum of pure states maps 
onto the n-dimensional unit sphere. We can describe the space of pure 
states without recourse to an external field by defining the overlaps q,~(r, t) 
[or  q(r, t)]  between two pure states r and t and the self-correlations d~(r) 
[or  d(r)]  for a single pure state, 
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1 N 
q~(r, t)=--~ ~ <S~) r <S~i>t 

i=l 
1 N 

daft(F) ~- N i~ l  ( S~S~i )r 

1 ( s , )2  q(r, t) = ~ .  

1 ( s T s , ) , = n  d(r) _= 

(3.1) 

P ~ ( q ~ )  = 

r ,  l 

r 

P(q) = Z 
r, t 

W(d) = Z 
r 

PrPtf[q~ -- q~#(r, t)] 

P ~ , S E d ~ p  - d~(r) ] 

P~P,3Eq-q(r, t )]  

(3.2) 

P ~ [ d -  d(r)]  = 6 ( d -  n) 

As we mentioned in the previous section, since the pure states of the 
quenched n-vector model are not related by any apparent symmetry, they 
cannot be extracted by some external magnetic field, and the distributions 
(3.2) are the only way of describing its space of pure states. 

In the case of the nonrandom n-vector model, the probability distribu- 
tions (3.2) can be evaluated exactly. The solutions can be expressed in 

( ) r  refers to the thermal average restricted to the pure state r. 
The definitions for overlap q~  and for self-correlation d~  corresponds 

to parameters which arise naturally within the replica formalism for the 
quenched random-bond n-vector model  (a) The definitions for q and d, on 
the other hand, though intuitive, average out some of the information con- 
tained in q~  and d~.  Both sets of definitions represent generalizations of 
the definition for overlap which is used in the Parisi theory of spin glasses 
and to which they reduce for n = 1. In particular, the parameter for self- 
correlation d~  which is necessary in the replica theory for n > 1 becomes 
equal to one when n = 1 and hence does not appear as a parameter in the 
Parisi theory at all. We shall investigate both sets of definitions for the 
nonrandom model. 

If we know the probability Pr for the system to settle into the pure state 
r, then we can describe the structure of the space of pure states by giving 
the probability distributions for the above overlaps and self-correlations, 
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terms of hypergeometric functions 2F1, or alternatively, in terms of 
associated Legendre functions of the second kind, Q~. Furthermore, as we 
mentioned in the introduction, they describe precisely the geometrical 
degeneracy of the overlap and self-correlation parameters which appear in 
the replica formalism for the quenched n-vector model. (3) 

4. M A G N E T I Z A T I O N  PER SITE (S7) A N D  
S E L F - C O R R E L A T I O N  ( S~.S~) 

The magnetization per site has been evaluated by Silver et aL (3) They 
find 

( 8 7 )  = x / n  x ,  B= =- rn;B ~ (4.1) 

where/}~ is the ~ component of the unit vector B in the direction of B, and 
where x s is a solution of the transcendental order parameter equation 

I , / 2 (2Jnx  , + B x/-n) 
x~ - (4.2) 

In~ 2 - l ( 2 J ,  x s "-}- B ~ ) 

The Iv are modified Bessel functions of order v. There is a critical tem- 
perature Tc corresponding to the critical point Jc = 1/2. Solutions m > 0 
exist only for T> To. 

I n  order to evaluate the self-correlation < $ 7 S ~ ) ,  on the other hand, 
we first apply the relation 

T ~ dy c__yTy/2 (4.3) e �9 a / 2  = .t D y e  yra, D y  = (2n) "/2 -- oo 

to the definition of ( S ~ S ~ ) .  With the partition function Z N  and the 
abbreviation 

11 -= y + B (4.4) 

we have 

<S:S~)=-Tr{s~} S:S~ exp Njk~- - ,  --1 SfSk"[-BT ~j=l Sj--JFI Z N 

[ ~ Dy 51Lst] =C~ S~Se exp(nTS) dS-] 
�9 [~llSll =,/; exp01 rS) dS]N-I J 

- ~o~ Dy ~tLSll =,/~ exp01TS) dS" [~llslt =,/~ exp01 vS) dS] N-1 
(4.5) 
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The integrals in this expression can be evaluated using the relations 

Sis, = R S~S# exp(TI rS) dS 

R,+1(2~),/2 (t /R)-( ,  2)/2 [ q R  = z./2(~R) + 7 I./2 + ~(~R) 

f,s, = R exp(q rS) dS 

=R.-1(2~) . /2  (~/R)-(. 2)/2 1n/2_1(~lR ) 

(4.6) 

where 6~z is the Kronecker delta symbol and where ~/= II11H. We find 

• k 

"Y (~.7-; L(~.) "/2I-;j 

=nf bxl~ F a~ (~--~+1"/2(4) U~PL/2+I(~)lexp[NG(x,B)]~ ~ T j  

(4.7) 

where in the last step we have performed the coordinate transformation 
y = (2JnN) 1/2 x and we have defined 

{ = 2Jnx + B x/-n, ~=  ]l~]J (4.8) 

and 

G(x, B) -= - J n x T x  + in 1,/2_ ~(ll2Jnx + B ~l l )  
112Jnx + B ~11  n/2-1 

(4.9) 

As can be seen from Eq. (9.6.10) in ref. 5, the function In~ 2_ I(Z)/Z n/2- 1 
increases monotonically for real z ~> 0. Therefore, the right-hand side of 
Eq. (4.9) will assume its maximum value when x is parallel to B. The 
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saddle point method of Laplace applied to the integrals in Eq. (4.7) as 
N ~ ~ then yields 

(S~S~) = n L(2Snx, + B x/-s In/2 a(2Jnxs + B x/-s 

+ ~@/~ In/2 + l(2Jnxs + B x/n)]  
I,/2_ ~(2Jnx~ ~ _ 1  (4.10) 

where x, represents the saddle point which maximizes 

G(x, b) = -Jrlx 2 + In In~2- l(2Jnx~ + B x/-s 
(2Jnx~ + B x/n) "/2-1 (4.11) 

The saddle point equation t?G/c3x~=O reproduces exactly the order 
parameter equation (4.2) and thus justifies post facto our notation x~. 

By using the relation 

n 
In/z(Z) + In~2+ l(z) = 1,,/2_ l(z) (4.12) 

and Eq. (4.2), we can write the self-correlation (4.10) as 

( S : S ~ ) -  nxs (1 nXs_ .~ 
2Jnx ,+Bx/ -~6~+nB@~ 2jnx ,+Bx/-s  (4.13) 

In the limit B ~ 0 ,  we have xs~B/[x /n(1- -2J)]  when T >  Tc and Xs:AO 
when T <  To. Therefore, we find 

( 6~ (T>  T~) 

(S:S~i) B ~ 0  ' t l  6 ~  ~ + n / } @  ~ ( 1 - ~ ) 1  (T<Tc)  (4.14) 

This equation is understood as the magnitude B of B approaching zero 
while the direction [~ remains frozen in. 

We see that (S~S~) can be expressed explicitly as a function of J 
without having to solve a transcendental equation. For T >  T~, the spins 
decouple and the self-correlation is ~ .  As T ~ 0, the spins are completely 
correlated with the external magnetic field and the self-correlation becomes 
n/~@ B. Finally, the phase transition point Jc= 1/2 can be read off 
immediately from (4.14). 

We conclude this section by noting that as B ~ 0 the model becomes 
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isotropic and the e dependence in (4.1) disappears, i.e., q~ and hence P ~  
must be independent of cqL In the same fashion, (S~S~) and hence d~,  
W~ will not depend on c~ and fl for e :/= fl and not on e for e = ft. 

5. P R O B A B I L I T Y  D I S T R I B U T I O N  P.p FOR T H E  O V E R L A P  qop 

From Eq. (4.1), we find that the overlap q~B(r, t) defined in (3.1) is 
given by 

1 N ~0 ( r >  rc )  
q~p(r, t)=N,~.= ( S ~ ) r  (S f l i ) t  : (m2 /~ /~  ( T <  T~) (5.1) 

m = x f n x ~  refers to the solution of (4.2) as B ~ 0. Here B~ and B, are 
simply two unit vectors, parametrized by the symbolic subscripts r and t. 
We explained at the beginning of Section 3 that each pure state r of our 
model can be represented by an n-dimensional unit vector Br. 

Because of the symmetry of our model when B ~ 0, each pure state is 
equally likely. The probability P~ of finding a pure state in the solid angle 
element ds is therefore given by 

dr2 
P r - [ 2 ( zC/2 / F( n/2 ) ) ] (5.2) 

5.1. P,,~(q,,a) for T> T~ 

By inserting (5.1) and (5.2) into the definition (3.2) for P ~  we get 

P~,(q~,) = ~ PrPt5(q~ -- O) = 6(q~,) (5.3) 
r, t 

5.2. Pop(qa~) for T< Tc 

By inserting (5.1) and (5.2) into the definition (3.2) for P ~ ,  and by 
using n-dimensional spherical coordinates, we find 

P~(q~p) = ~ PrP,6(q~p - m2/~/~)  
r, t 

F r ( . / 2 ) l  2 
= [ ~ J  fo dOifo d~ll 

n 1 

;2 ;2 x 1-I dOk sin k - ~ Ok d~bk sin ~- 1 ~b k 
k = 2  

x 6 ( q ~ - r n  2 cos 0,_1 cos ~0,_ l) (5.4) 

where, without loss of generality, we have chosen the x,  axis of the 0 
coordinate system in the direction a and the x,  axis of the ~b coordinate 
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system in the direction ft. After performing the integrations up to 0n 2 and 
ip,-2, we have 

P~n(q~) = rcF((n - 1)/2) 2 dO dip sin ~-2 0 sin" z ip 

x 6(q~n - m  2 cos 0 cos ip) 

F(n/2)2 fl  fl  = dx dy (1 - x 2 )  (n 3)/2 
rcF((n- 1)/2) 2 1 -1 

x ( l - -y2)  (" 3)/2(~(q=l~--mZxy ) 
F(n/2)2 (1 

= ~r((-T-2--i~2) 2 J 1 dx (1 - x2)  (n 3)/2 

172 \ ( n - 3 ) / 2  A(v.2 _ ,q,2 /vi,14~ 
_ ,~n / ~-- ~<p/"' , 

• i m4x~ ) m 2 Lxl 

_ O(lrcm2F((n_l)/2) qZ~/m4) F(nl2) 2 ~f2 _ 2jm4dt(l_t)(.  3)/2 

X ( t  -q2~'~("-3,12 
\ m4] t-(~ 1)/2 (5.5) 

where O(x) is the Heaviside step function, O(x)= 1 for x > 0 and O(x)= 0 
for x < 0 .  By using Eq. (2.2.6.1) from ref. 6, this becomes 

0 (1 q~Zn) r(n12)2 P~a(q~) 
- ma] n m - ~  1) 

(1_ V-2 ,.-,)/2 
• \ m 4) t m 4) 

x 2F1 ~- , - - - ~ ; n - 1 ; 1 -  (n=2,3, . . . )  (5.6) 

Because of the special form of the hypergeometric function, this result can 
also be written in terms of associated Legendre functions of the second 
kind Q,,, 

0 (1 - q 2 )  2" - 'r(n12)3 f l / -  ~--~/"2 \ < .  - 3)/2 
P~n(q~n) m4j rc3/2m2F-~i) ~CCs l )/2) \ m 4 ] 

{ 1 + q2~lm4) 
x O(n-3)/2 \1 -q~#/m4,] (n=2, 3,..) (5.7) 

where we have used Eq. (7.3.1.71) from ref. 6 and Eq. (8.2.4) from ref. 5. 
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Equation (5.7) means that below T c and for odd n, P ~  can be 
expressed as 

0(1 - -  q2~/m4)[Rl(q=~)In q~z + R2(q~z) ] 

(R1, R2 rational functions), while for even n it can be expressed in terms of 
complete elliptic integrals. In both cases, P ~  has a logarithmic singularity 
at q~  = 0. 

The diagrams in Fig. 1 illustrate the behavior of P~(q~) above and 
below To. 

T>T~ 

q~ 
0 

mm2 i112 

T<% 
(n = i )  

T<% 
(~ = 2) 

q ~  
_ r n  2 m 2 

i T<% (,, : 3) 

q~z 
- - r n  2 r n  2 

T < ~  

(~ > 3) 

q~ 

T<T~ 

Fig. 1. Probabi l i ty  distr ibut ion P~(q~p) for the over lap  between  pure states. P~t~(q~g) 
becomes  a del ta  funct ion  as n ~ oe. 
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6. PROBABIL ITY  D I S T R I B U T I O N  Wap FOR THE 
S E L F - C O R R E L A T I O N  d.p 

From Eq. (4.14) we get the self-correlation d~(r) defined in (3.1), 

f 6 ~  (T> To) 

d ~ e ( r ) = l ~ a ~ B + n ~ , J ~ r ( l _ l  ) (T< To) (6.1) 

The probability distribution W=e of d~ is defined in (3.2). If we take the 
remarks at the beginning of Section 5 into account, W~e can be derived in 
a similar fashion as Pap. 

6.1. Wo~(do~) for  T > T  c 

By inserting (6.1) and (5.2) into the definition (3.2) for W~ we get 

W=e( d~e ) = ~ Pra( d~ - 6~) = a( d=e - c~) (6.2) 
r 

6.2. W.~(d.~)  for  T <  T c 

By inserting (6.1) and (5.2) into the definition (3.2) for W~, and by 
using n-dimensional spherical coordinates, we have to distinguish the cases 
~=f i  and ~r 

6.2.1. a=13. For this case 

W=(d~) - r(n/2) f2~ .[[1 C ~ 
2n "/2 Jo dOlk=230 dOk sink-- l Ok 

1 2 (,  )cos0   1 ,63, 
where, without loss of generality, we have chosen the x~ axis of the 
spherical coordinate system in the direction ~. Thus 

F(n/2) I 1 
W~a(d==)- ~1/2((---~_ ]-)/2) J - i  d x  (1 - -x2 )  (n 3)/2 

x 6 [d~-2-- ~ -  

0 ( d ~ -  1/(2J)) V(n/2) C 1 = j dx ( l - x 2 )  ("-3)/2 
VrTig -- 1 

x ~ ,5(x-z , ) t -  6(x+__zl)] (6.4) 
[_ Z2 Z2 J 
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with 

1 1 ~ ]  1/2 ~d~"-l/(eJ)~ 1/z = - I 4 n ( 1 - ~ - ) ) ( d ~ , - ~ j j  (6.5) 
z l  = j d  - J ' 

Here we have used the fact that (1 - 1 / (2J ) )>0  for T <  To. Equation (6.4) 
becomes 

• 0(1 - z  2) (1 -z2) ~n-3)/: (n=2 ,  3,...) (6.6) 
Z2 

6.2.2. a ~ [3. Without loss of generality, we can choose the axis 2, 
of the spherical coordinate system along the direction ~, and the basis 
vector 2n_ 1 along the direction ft. With this choice, and for n > 2, we have 

W=~(d~=) F(n/2) ff'~ "fiz f-  ~ 27~n/2 dO 1 dOk sin k- 1 Ok 
k=2 

= dx dy (1 -x2) (n-4)/2 (1 __y2)(n--3)/2 
27t 1 - 1  

x 6 Id~ ,~ -n ( l -~ )xy (1 -y2 ) l /2  ] 

n-- 2 1 dy _ y2 d~p 
=2~n(i"--17(2J)) f-~ ~7  1 n2(1 _ 1/(2j))2y2j 

E j x 0 1 - - n 2 ( l _  l/(2j))2y2(l_y2) 

= (n-  2) O(z) f~( +~,~: dx x_r (x_ ~ -4~/2 
2 ~ - n ( ] - - i / ~ ) )  _ ~'/~ 2 )  ~ 
x (  1 + x/7 2 X) (n-4)/2 (6.7) 

where we have defined the quantity 

2 
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E q u a t i o n  (6.7) can  be ev a l u a t ed  by  us ing  the re la t ion  (2.2.6.1) f rom ref. 6. 

W e  f ind 

( n _ 2 ) F ( ( n _ 2 ) / 2 ) 2 0 ( Z )  Z(n 3 ) / 2 ( ~ _  / (n 2)/2 
W . ~ (  d./3 ) - 27zn(1 - 1 / (2J) )  r (  n - 2) \ - - /  

, ~ - ; n - 2 ; ~ _ l  / (c~ # fl; n = 3, 4,...) 

(6.9) 

This  resul t  can  also be wr i t t en  in  te rms  of assoc ia ted  Legendre  func t ions  of 

the  second  k i n d  Q~ by  us ing  Eq. (7.3.1.71) f rom ref. 6 a n d  Eq. (8.2.4) f rom 

ref. 5, 

T>T= 

d~ 
1 

T <% 
(n=l)  

daa 

T<T~ 
(~ = 2) 

daa 
dl d2 

L T<T~ (~ : 3) d~a 
d~ d~ 

L T<% 
(n : 4) 

daa 
d~ d2 

t T<To (~ = 5) 

d~ d2 

L T<% 
(~ > 5) 

d=~ 
dl d~ 

Fig. 2. Probability distribution W~/s(d~p) for c~ = ft. The minimum and maximum self-correla- 
tions d~ for the spin components are dl = 1/(2J) and d2 = n - (n - 1)/(2J), respectively. Note 
that W ~ . ( d J  does not become a delta function as n ~ oo. The graph for n > 5 is understood 
as showing the qualitative behavior of W.~ when n > 5. 
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W~(d~a) = 
(n - 2) 2"-3F((n - 2)/2) F((n - 1)/2) 

nTz3/2(1 - -  1 / ( 2 J ) )  r(n - 2)  
O(z) z ('-4)/4 

(a  # fl; n = 3, 4,...) 

For n = 2, on the other hand, we have 

W~z(d~/~)= ~--~ ;[~ dr S Id~z- 2 ( 1 - ~ )  cos C sin r 

O(z) 
-n(l_l/(2j)),v/. ~ (a#fl;n=2) 

(6 .10)  

(6.11) 

T > T c  

d~r 

T < T ~  
(,~ = 1) 

d ~  

T <Tr 
(~ = 2) 

d~r 
- d o  do 

T <T~ 
(n = 3) 

d~,~ 
-do do 

T < %  
(,~ = 4) 

d~ 
-do do 

T <T~ 
(~ = 5) 

do~ 
- &  & 

T <Tc 
(,~ > ~) 

- d~ z 
-do do 

Fig. 3. Probabi l i ty  distr ibut ion W ~ ( d ~ )  for c~ #/3.  The  m a x i m u m  self-correlat ion between  
different spin c o m p o n e n t s  of  the same  spin is d o = (n /2 ) [1  - 1 / (2J) ] .  N o t e  that W~p(d~,a) does  
not  b e c o m e  a delta funct ion  as n ~ oe. Again ,  the graph  for n > 5 is unders tood  as i l lustrating 
the qual i tat ive  b e h a v i o r  of  W,p w h e n  n > 5. 

822/71/3-4-2 
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where z was defined in (6.8). For  n = 1, we have trivially 

W~a(d~a) = 6(d=~ - 1 ) (n = 1 ) (6.12) 

Equations (6.10) and (6.11) mean that below Tc and for odd n > l ,  W~ 
can be expressed in terms of complete elliptic integrals, while for even n, 
W~ is of the form 

R1 and R 2 are rational functions with R1 = 0 for n = 2 and R1 ~ 0 for n > 2. 
Thus, for n > 2, W~ has a logarithmic singularity at d~  = 0, while for n = 2 
it has poles at d~p= _+[1 -  1/(2J)] 1/2. 

The diagrams in Figs. 2 and 3 illustrate the behavior of W=~(d~) 
above and below To. 

7. PROBABILITY D ISTRIBUTION P FOR THE OVERLAP q 

From Eq. (4.1) we find that the overlap q(r, t) defined in (3.1) is 
given by 

0 ( r>  To) 
q(r, t)= m2~r~t (T< Tc) (7.1) 

The probability distribution P(q) is defined in Eq. (3.2). If we take the 
remarks at the beginning of Section 5 into account, P(q) can be derived in 
the same fashion as P~a(q=p). 

7.1 .  P(q) f o r  T >  Tc 

By inserting (7.1) and (5.2) into the definition (3.2) for P(q), we get 

P(q) = ~ P r P t f ( q - O )  = 6(q) (7.2) 
r, t 

7.2. P(q) for  T <  Tc 

By inserting (7.1) and (5.2) into the definition (3.2) for P(q) and by 
using n-dimensional spherical coordinates, we have 
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P ( q )  = ~ P r P , 5 ( q  - m 2 B ~ B , )  
r, t 

=LT-~-J fo d~ ;o d~lk~I_2.0 dOksink l Ok 

;o x d O ~ s i n k - l O k S ( q - - m 2 c o s O ~  1) 

F(n/2)  ; 1 

- 7 r a n F ~ ( ~ S i ) / 2 )  j dx (1 - x:),'-~)/~ 5(q-m2x) (7.3) 
1 

where, without loss of generality, we have associated the 0 coordinate 
system with Br and the @ coordinate system with B,, and we have chosen 
the x .  axis of the @ coordinate system in the direction Br. Thus, 

F(n/2) ( m q _ ~ ) (  _qZ,](,-3)/2rn___4j 
P ( q ) - r c l n m 2 F ( ( n _ l ) / 2 )  O 1- -  1 

T>T~ 

q 
0 

T < %  

(,~ = 1) 
q 

_ m  2 rt~ 2 

T < T ~  

(~ = 2) 
q 

_ m  2 r n  2 

T < T o  

( n  = 3 )  

q 
_ m  2 Tn 2 

T < %  

(~ = 4) 
q 

_ m  2 m 2 

T <T~ 
(~ = 5) 

q 
- - r n  2 ~ 

T <T~ 
(~ > 5) 

q 
_ m  2 ~ 2  

T<To 
(,~ --~ oo) 

q 
_rT, z 2 m 2 

Fig. 4. 

( n = 2 ,  3,...) 
(7.4) 

Probabi l i ty  distr ibut ion P(q) for the over lap  between  pure states. P(q) becomes  a 
delta funct ion as n --+ oo. 
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The diagrams in Fig. 4 il lustrate the behavior  of P(q)  above and below 
To. Note  that  for n = 2, P(q)  peaks at the extremal values q = ~ m  2, while 
the related dis t r ibut ion P ~ ( q ~ )  for n = 2 peaks at q = 0 .  Fur ther ,  P(q)  
follows the semicircle law for n = 4. 
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